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J. Phys. A: Math. Gen. 19 (1986) 2707-2714. Printed in Great Britain 

A tendency to a formation of two-dimensional self-consistent 
structures in Coulomb systems 

N Martinov and D Ouroushev 
Faculty of Physics, University of Sofia, bould. A Ivanov 5,  Sofia 1126, Bulgaria 

Received 16 December 1985 

Abstract. A class of periodic solutions of the two-dimensional Poisson-Boltzmann system 
was found. These Jacobi elliptic functions reveal a tendency to self-organisation, e.g. 
periodic spatial distribution, for self-consistent Coulomb ensembles. 

The spatial distribution of the particles in a two-component Coulomb gas can be 
described by the solutions of the non-linear Poisson-Boltzmann ( PB) equation (Debye 
and Huckel 1923, Lampert 1985) 

A$ = sinh 9 (1) 

* = ecp/k,T X = f x  Y = f y  Z = f z  
with 

where cp is the self-consistent electrostatic potential, f = ( 8 ~ n , e ’ / ~ k ~  T)”’ is the 
reciprocal Debye length, no is the homogeneous particle concentration, T is the absolute 
temperature and e is the electron charge. The spatial distribution of the positive and 
negative particle concentration, respectively n+ and n- in the thermal equilibrium can 
be determined by the Boltzmann law, using the solution IC, of the PB equation: 

n+ = no exp(-II/) (2) 

n- = no exp($). (3) 

As has been shown (Martinov et a1 1984, Georgiev et aZ1980,1986) the exponentially 
non-linear equation (1) in the plane symmetry case posseses an infinite number of 
periodic solutions with periods from 0 to CO. As a result we obtain a periodic distribution 
of the particles of the system and the formation of a static plane wave of the space 
charge within it. It must be outlined that the existence of the periodic solutions is 
thus a direct consequence of the non-linearity of the PB equation. In the classical 
linear Debye-Huckel (1923) theory based on the linear variant of the PB equation, 
there are no periodic solutions and the tendency for periodic structure formation 
cannot be revealed. In this case we have only a monotonous decreasing solution. 

In this paper the two-dimensional PB equation 

will be studied and it will be shown that this equation possesses periodic solutions 
leading to self-consistent Coulomb structures with a corresponding symmetry. 
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The substitution 

a ( X )  = A u ( c Y X )  
$( X ,  Y )  = 4 tanh-’ 

as we shall see later makes it possible to separate the variables in (4). Here CY and p 
are parameters. Assuming 

4 tanh( e) (  1 + tanh2( e ) )  
( 1  - tanh2( e))’ sinh $ = sinh(40) = 

where 0 = tanh-’( i i ( X ) /  ij( Y ) ) ,  the result for the differential equation (4) is 

(6) 
A a ’ ( ~ ’ ) ~ + p ’ ( u ‘ ) ’  - u’+A2u2 - 

U V’ - A’u’ U’ - A2u2’ 

By appropriate differentiation of (6) by x and y ,  the following two equations may result: 

U’ ( U’ - A2u2) A2a2( U’)’+ p2( U’)’ 
U’ - A2u2)’ ( U’ - A2u2)’ 

A 2 ~ 2 ( ~ ‘ ) 2 + / 3 2 ( ~ ‘ ) ’ )  
uu’ (U’ - A’u’)’ 

Considering the summation of equations (7a) and (7b)  and taking into account equation 
(6) produces the following non-linear equation: 

- -  a’ ( “ ” ) I  + y  p’ (UJ - =o.  
A’uu’ U vu 

The resulting equation (8) clearly defines the possibility of separating the variables in 
equation (4) 

= - C = constant. - -- 
vu’ ( 9 )  

Therefore we reduce the non-linear partial differential equation (4) to two non-linear 
ordinary differential equations of third order 

Integration of ( loa)  and ( lob)  leads to 

(U!)’ = - ( 3 4 +  (3) u2+ (3) 
(U’)’ = ($) u4+ (3) U’+ (9) 
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where yl, y2, ti,, 6, are integration constants. Equations ( l l a )  and ( l l b )  are of the 
following type: 

(U')' = a,u4+ b,u2+ C, 

( u ' ) ~  = azo4+ b2u2+ c2 

(12a) 

(12b) 

where the prime denotes differentiation by the corresponding variable. 
Equations (12a) and (12b) generate the Jacobi elliptic functions and hence the 

solutions can be expressed in these functions. Satisfying equation ( 6 )  and taking into 
account (7a)  and (7b), respectively ( l o a )  and ( lob ) ,  requires the following three 
conditions: 

a 2 a l  + A2P2c2 = 0 (13) 

@'a2+ A2a2c l  = 0. 

The first condition in (13) we shall call the selection rule for the elliptic functions, the 
other two being commutation rules for the elliptic functions. 

The coefficients a ,  bi, c, ( i  = 1,2)  depend on the concrete elliptic function U = 
U( ax, k,), U = U( P Y, k,) where k, and k, are the corresponding elliptic integral modules. 
The combination of elliptic functions u ( a X , ,  k , ) u ( P Y ,  k 2 )  satisfying (4) can be deter- 
mined by the dispersion relations (13). As can be seen from (13) these are couples of 
functions, for which the coefficients a, and c, must possess an opposite sign, respectively 
a, and c1 for the real values of the parameters a, p, A. 

The solution of equation (4) depends on the five constants A, a, p, k l ,  k2 ,  among 
which the three relations (13) exist. Consequently it depends on two free parameters. 

Table 1 below illustrates in detail the possible elliptic function combinations which 
satisfy equation (4). Combining table 1 and the conditions (13), the following seven 
possible types of the equation solutions are obtained, describing two-dimensional 

Table 1. Relation between the modules of the 12 main Jacobi elliptic functions and the 
coefficients a, b, c in their generating equations. 

Elliptic 
function a b C 

cnx - k 2  2 k 2 - 1  1 - k 2  
sn x k Z  - 1  - k2 1 
dn x - 1  2 - k 2  k 2 - 1  
sn x/cn x 1 - k 2  2 - k 2  1 

sn xJdn x -k2(1  - k2)  2 k 2 - 1  1 

cn xJdn x k 2  - 1 - k 2  1 

cn xJsn x 1 2 - k 2  1 - k 2  

dnxJsnx 1 2 k 2 - 1  - k2(  1 - k 2 )  

dn x/cn x 1 - 1  - k 2  k 2  
(sn x)- '  1 - 1  - k2 k2 
(cn x)-'  1 -k2  2 k 2 - 1  - k 2  
(dn x)-'  k 2 - 1  2 - k 2  - 1  
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periodic structures with periods Tx and T y  respectively. 
CC, =4tanh-’[A cn(aX, k,) cn(PY, k2)] 

k: = k: = 
A2[a2(A2- 1) - 13 A ~ [ ~ ~ ( A ’  - 1) - 11 

4 K  (k2) 

a2(A2 - 1)’ pZ(A2-  1)2 

Tx =- 
CY P 

sn (aX/kL  k,) sn(PY/kL k2) ( 2 d n ( a X / k L  k,) dn(PY/kL k2) 

T y  =- A’+ 1 4K(k1) a 2 +  p2 = A2-1 

(15) 

CC, = 4 tanh-’ Ak’k’ 

k: = 
A ~ ~ ~ ( A ~  - 1) 

k: = 
A ~ ~ ~ ( A ~  - 1) 

a2(A2 - 1)2 - 1 
1 

Pz(A2-1)-1 

4 K  ( k2) k i  T y  = 
4 K  (kl )k: 

A -1 a P 
Tx = a 2 + p  = 2 

dn(P y/ kS, k2) 
A2[1-P2(A2-1)] 

k: = (16) a 2 ( A 2 -  1)2 A ~ - ~ ~ ( A ~ -  

4K(k l )  T* =- 
A’- 1 a 

A ~ [  a z ( ~ 2  - 1) - 13 
k: = 

4 K ( b ) k i  
P 

T y =  1 a2 - P2(A2 - 1) = - 

IL = 4 tanh-’{A dn( ax, k,) sn(PY, k2)} 

~ / A ~ ( A ~ -  1) - 1 ~ ~ [ p ~ ( ~ ~ - - i ) - i ]  
k:=1- k: = (17) a2(A’-1) p2(A2-1) 

4K(k2) Tx =- 2K(kl)  a =AP Tx =- 
a P 

p ’ ( ~ ~ -  I )  + A* 
a 2 ~ 2 ( ~ 2  - 1) A ’ ~ ’ ( A ’ -  1) 

ki  = 
A’ - - 

A2 

k: = 

4K(k2) T y = p  2K(k,) Tx =- 2 2-- 

a P a - P  -A2-1 

A’[ 1 - P2( 1 + A2)] 
P2(  1 + A2)  

+ 1  k:=1- 
a2 /A2(  1 + A2)  - 1 

k: = 
a’( 1 + A2) 

4K(k2) T y  =- 
2K(k,) a =AP Tx =- 

a P 

(20) 
1 - P ~ / A ~ ( A ’ +  1) k : = l -  

I - ~ ~ / A ~ ( A ~ + I )  
k:=1- 

a2(A2+  1) p 2 ( A 2 +  1) 
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These seven types of solutions do not cover the wide variety of possible solutions 
of the two-dimensional PB equation based on elliptic functions. It can be shown that 
considerably more complicated algebraic combinations of elliptic functions satisfy the 
equation of the following type: 

( = au4+ bu2+ c. 

Such functions are the following: 

1 - k, sn2( a x ,  k , )  
IcI1(x) = 1 + k, sn2( ax, k, )  

This allows us to build a solution of equation (4), differing from the seven solutions 
given above, or 

I,!I = 4 tanh-'[A+1(X)(C12( Y ) ] .  (23) 
Consequently the variety of the solutions of equation (4) is very.wide. The solutions 
(14)-(20) presented above possess some common properties, which are now presented. 

A general property for all possible solutions is the fact that, when fixing the period 
in one direction (for example T x )  or assigning some values to k, and a, the self- 
consistent two-dimensional structures require a determined period in the other direc- 
tion. Therefore the solutions cannot possess an arbitrary period in the other direction. 
In a particular case, for example T2, the periods can be infinite and the corresponding 
solution is expressed in elementary functions (it concerns the solution (14)) 

1 .  p L -  A 
a2 = - 

cosh( P Y )  A'-1 A2-1 
where Tx = 2 7 ~ / a ,  Tv=03. This one-periodic solution of the PB equation can be 
obtained formally from (14) setting k,  = 0 and k2 = 1 .  In accordance with the above 
it must be mentioned that equation (4) does not possess a solution of type ( 5 )  
non-periodic in both directions. For the solution (14), the condition for a, p, A to be 
real requires m>A 2 1; hence the following relation between k, and k2 may be obtained: 

2 >  k : + k ; s l .  (25) 
This inequality explains the above-mentioned properties of two-dimensional self- 
consistent solutions. All the solutions of equation (4) possess singularities for some 
values of the coordinates x and y. The points in the xy plane for which the solution 
possesses a singularity can be determined by the following condition: the argument 
of the tanh-' function in ( 5 )  must be equal to i l .  The form of a single line in the xy 
plane can be determined from this condition. The equation of this line in the first 
quadrant for the solution (14) is as follows: 

(26) A cn(aX,  k , )  cn(pY, k2) = 1. 
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Of course the form of the line depends on the two free parameters of the solution. In 
the particular case k, = 0, k, = 1 (see solution (24)) the singular line is presented in 
figure 1 for different values of parameter A. For each solution this line is closed and 
it outlines an area, the size of which varies from zero to infinity. 

- 
1 .- 

\ 
\ 

1 2 3 X 

Figure 1. Form of the singularity line in the xOy plane for solution (24) of the PE equation. 

The solutions (14)-(20) presented above can be classified according to the type of 
space structure they describe. These two types of structure are illustrated in figures 
2(a) and 2(b). Solutions (14), (15 )  and (16) may be referred to as of the first type, 
while solutions (17), (18), (19) and (20) are of the second type. Structure means a 
periodic self-consistent spatial distribution (see formulae (2) and (3)) of the Coulomb 
gas particle concentration. 

Taking into account that the non-linear equation (4) is a scaling non-invariant, the 
conclusion may be that the transition from one type of solution to another can be 
performed by a scaling transformation. An analysis was performed to explain the 
scaling transformation properties of the solutions (14)-(20). As an example we shall 
perform the transition from solution (14) to solution (17), which can be accomplished 
by the scaling transformation 

As can be seen this transformation reforms the dispersion relations for the solution 
(14) into the relations for the solution (17). An interesting property of the two- 
dimensional solutions obtained is their relation to the Laplace equation two- 
dimensional periodic solutions. This connection can also be noticed in the spherical 
symmetry (Martinov et a1 1985) solution of the linear Debye-Huckel equation for the 
self-consistent field 

cp = ( e /  r )  e+. (28) 
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Y 

X 

Figure 2. Two possible types of space structures, ( a )  type I, (b) type 11, described by the 
solutions (14)-(20) of the PB equation. The hatched areas are framed by a line on which 
the potential J, is *CO. 

The solution (28) is tending asymptotically to the solution 

cp = e / r  
of the radial symmetry Laplace equation, where f r  is tending to 0. If we take for 
example the solution (1) and set A = 1, a = p, the corresponding dispersion relations 
reduce to a single relation 

( 3 0 )  

( 3 1 )  

k : + k : = l  k: = 1 - k:  = ki2 

and the function obtained 

$L = 4 tanh-'[cn(ax, k , )  cn(ay, k 2 ) ]  
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is a solution of the two-dimensional Laplace equation 

a'+ a2+ 
ax2 ay2 
-+--0. 

The analysis performed for solutions (14)-(20) shows that only some of them can be 
reduced to the two-dimensional periodic solutions of the Laplace equations. 

The physical meaning of the solution (31) is given in Morse et al (1953). This 
solution describes a structure of positive and negative homogeneously charged infinite 
treads periodically distributed in the xOy plane and oriented parallel to the Oz axis. 
The structure corresponding to solution (31) is given in figure 3 .  

+ - + - +  t 
t + 

+ + -  t -  + 
- t - t -  

Figure 3. Spatial distribution of the charged treads leading to solution (31) of the Laplace 
equation T, = 4k( k ) /  a, T ,  = 4k( k')/cr. 

As can be seen this figure is similar to figure 2( a) .  The singularities of the solution 
are localised on the treads in the case of the Laplace equation. For solution (14) of 
the PB equation the singularities arise over the cylindrical surfaces parallel to the Oz 
axis. The form of the base of these cylindrical surfaces can be determined by equation 
(25). These cylindrical surfaces are distributed periodically in space (figures 2 ( a )  and 
2 ( b ) ) .  If the parameter A +  1 these cylinders reduct to charged lines. 

The presence of the singularities in the solutions of the Laplace equation as in the 
solutions of the non-linear PB equation is a consequence of the existence of charged 
treads and, respectively, surface charge density. These particular properties of the 
solutions of the Laplace equation are introduced 'artificially' by a periodic distribution 
of x charged treads. In the case of the PB equation they reveal an inherent property 
of the self-consistent system. This tendency for structure in the two-dimensional 
Coulomb gas results directly from the non-linearity of the PB equation and must be 
considered as a characteristic self-organisation of this system. 
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